要求:
国家棋盘为8*8的方格棋盘,将"马"放在任意指定方格中。最终让马走遍64个方格。
关于象棋中马的走法
如下图所示:
下面是代码:
#include <stdio.h>
#include <time.h>
#include <Windows.h>
#define X 8
#define Y 8
int chess[X][Y];
// 找到基于(x,y)位置的下一个可走的位置
int nextxy(int *x, int *y, int count)
{
switch (count)
{
case 0:
if (*x + 2 <= X - 1 && *y - 1 >= 0 && chess[*x + 2][*y - 1] == 0) //3这个位置
{
*x = *x + 2;
*y = *y - 1;
return 1;
}
break;
case 1:
if (*x + 2 <= X - 1 && *y + 1 <= Y - 1 && chess[*x + 2][*y + 1] == 0)
{
*x = *x + 2;
*y = *y + 1;
return 1;
}
break;
case 2:
if (*x + 1 <= X - 1 && *y - 2 >= 0 && chess[*x + 1][*y - 2] == 0)
{
*x = *x + 1;
*y = *y - 2;
return 1;
}
break;
case 3:
if (*x + 1 <= X - 1 && *y + 2 <= Y - 1 && chess[*x + 1][*y + 2] == 0)
{
*x = *x + 1;
*y = *y + 2;
return 1;
}
break;
case 4:
if (*x - 2 >= 0 && *y - 1 >= 0 && chess[*x - 2][*y - 1] == 0)
{
*x = *x - 2;
*y = *y - 1;
return 1;
}
break;
case 5:
if (*x - 2 >= 0 && *y + 1 <= Y - 1 && chess[*x - 2][*y + 1] == 0)
{
*x = *x - 2;
*y = *y + 1;
return 1;
}
break;
case 6:
if (*x - 1 >= 0 && *y - 2 >= 0 && chess[*x - 1][*y - 2] == 0)
{
*x = *x - 1;
*y = *y - 2;
return 1;
}
break;
case 7:
if (*x - 1 >= 0 && *y + 2 <= Y - 1 && chess[*x - 1][*y + 2] == 0)
{
*x = *x - 1;
*y = *y + 2;
return 1;
}
break;
default:
break;
}
return 0;
}
void print()
{
int i, j;
for (i = 0; i < X; i++)
{
for (j = 0; j < Y; j++)
{
printf_s("%2d\t", chess[i][j]);
}
printf_s("\n");
}
printf_s("\n");
}
// 深度优先遍历棋盘
// (x,y)为位置坐标
// tag是标记变量,每走一步,tag+1
int TravelChessBoard(int x, int y, int tag)
{
int x1 = x, y1 = y, flag = 0, count = 0;
chess[x][y] = tag;
// 如果tag==X*Y,则完成整个棋盘的遍历
if (tag == X*Y)
{
print();
return 1;
}
flag = nextxy(&x1, &y1, count);
while (0 == flag && count < 7)
{
count++;
flag = nextxy(&x1, &y1, count);
}
while (flag)
{
if (TravelChessBoard(x1, y1, tag + 1))
{
return 1;
}
x1 = x;
y1 = y;
count++;
flag = nextxy(&x1, &y1, count);
while (0 == flag && count < 7)
{
count++;
flag = nextxy(&x1, &y1, count);
}
}
if (0 == flag)
{
chess[x][y] = 0;
}
return 0;
}
int main()
{
int i, j;
clock_t start, finish;
start = clock();
for (i = 0; i < X; i++)
{
for (j = 0; j < Y; j++)
{
chess[i][j] = 0;
}
}
if (!TravelChessBoard(2, 0, 1))
{
printf_s("马踏棋盘失败\n");
}
finish = clock();
printf_s("\n本次计算一共耗时: %f秒\n\n", (double)(finish - start) / CLOCKS_PER_SEC);
system("pause");
return 0;
}运行结构如下:

本文介绍了一个基于深度优先搜索的算法实现,该算法能够使象棋中的“马”走遍8*8棋盘上的每一个格子。通过具体代码展示了如何寻找马的下一步合法移动位置,并实现了完整的遍历过程。
680

被折叠的 条评论
为什么被折叠?



